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Problem Set-Up

Given the data X = (X1, . . . ,Xn)
i .i .d .∼ Pr where Xi ∈ Rd .

Pr is the true distribution over sample X .
Pr is unknown.
Pr could be complicated as d increases.

Goal: How to learn Pr from data?

Idea: Construct a sequence of parametric probability
distributions Pθ to approximate Pr .

Pθ is a parametric distribution over X .
Pθ is structured!
Pθ is known.

Question 1: How to generate Pθ?

Question 2*: How to evaluate the quality of Pθ?
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Roadmap

1 Bregman Divergence Function

2 Generative Adversarial Networks (GANs)

3 Wasserstein Divergence and GANs

4 Relaxed Wasserstein
Moment Estimate, Concentration Inequality, and Duality
Continuity, Differentiability
Gradient Descent Scheme

5 Empirical Results
Experiment Setup
MNIST and Fashion-MNIST datasets
CIFAR-10 and ImageNet datasets

6 Conclusions
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A curious and simple math puzzle

Given a random variable X , and a flitration G, find (all?)
loss/divergence functions F (x , y) such that

arg min
Y∈G

E [F (X ,Y )] = E [X |G].

Example: L2 function: arg minY∈G E [(X − Y )2] = E [X |G]

Counter-example: L1 function

Is L2 the unique choice?
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Answer: Bregman Loss Fucntions Dφ(x , y)
(Banerjee, G. and Wang (2005))

Sufficient
arg min

Y∈G
E [Dφ(X ,Y )] = E [X |G].

Necessary: If for all X

arg min
y∈Rd

E [F (X , y)] = E [X ].

then with proper regularity conditions and up to an additive
constant,

F (x , y) = Dφ(x , y)
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What is Bregman Divergence Function?

BDF Dφ(x , y)

Let φ : Rd 7→ R be a strictly convex, differentiable function
Then, Dφ : Rd × Rd 7→ R is defined as

Dφ(x , y) = φ(x)− φ(y)− 〈x − y ,∇φ(y)〉.

For any x , y ∈ Rd , Dφ(x , y) ≥ 0, the equality holds iff x = y .
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Some examples of BDFs

φ(x) = x2, then Dφ(x , y) = (x − y)2

Let p
.

= (p1, . . . , pd) be a probability distribution

∑d
j=1 pj = 1, with φ(p)

.
=
∑d

j=1 pj log pj (negative Shannon
entropy) is strictly convex on the d-simplex.
Let q = (q1, . . . , qd) be another probability distribution

Dφ(p, q) =
d∑

j=1

pj log pj −
d∑

j=1

qj log qj

−〈p − q,∇φ(q)〉

=
d∑

j=1

pj log (pj/qj) ,

is the KL-divergence between p and q
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Proof of sufficiency

Let Y be any G-measurable random variable, and Y ∗
.

= E [X |G].

Then

E [Dφ(X ,Y )]− E [Dφ(X ,Y ∗)]

= E [φ(Y ∗)− φ(Y )− 〈X − Y ,∇φ(Y )〉
+〈X − Y ∗,∇φ(Y ∗)〉].

Notice

E [〈X − Y ,∇φ(Y )〉] = E [E [〈X − Y ,∇φ(Y )〉|G]]

= E [〈Y ∗ − Y ,∇φ(Y )〉]

Thus E [〈X − Y ∗,∇φ(Y ∗)〉] = 0,

And E [Dφ(X ,Y )]− E [Dφ(X ,Y ∗)] = E [Dφ(Y ∗,Y )] ≥ 0.
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More facts about BDFs

Introduced and studied in the context of projection (Csiszar
(1975))

Pythagoras theorem holds for BDF (Censor and Lent (1981))

Bijection between family of exponential distributions and
BDFs, via Legendre duality (Merugu, Banerjee, Dhillon,
Ghosh (2003))

Widely applied to data analysis and machine learning, such as
K-means clustering

Well adopted in convex optimization
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Generator Network [Goodfellow et al., 2014]

Generate the samples according to Pθ.

The real samples X is inaccessible.
Generate more compelling copies of X .

inaccessible

generate
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Determines whether the samples are generated or not.

has access to the real samples X .

optimizes the generator network by identifying faked samples.

pass!
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Generative modeling

The procedure of generative modeling is to construct a class of
suitable parametric probability distributions Pθ.

Generates latent variable Z ∈ Z with a fixed probability
distribution PZ .

PZ is known and simple, e.g., uniform distribution.

Generates a sequence of parametric functions gθ : Z → X .

gθ is complicated but structured.
gθ is the reason why the generative modeling is powerful.

Construct Pθ as the probability distribution of gθ(Z ). More
specifically,

Pθ(dx) =

∫
Z

1{gθ(z)=dx}PZ (dz) = EZ

[
1{gθ(Z)=dx}

]
.
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GANs: different divergence functions

GANs:

LSGANs [Mao et al., 2016]: Least square loss.
DRAGANs [Kodali et al., 2017]: Regret minimization.
CGANs [Mirza and Osindero, 2014]: Conditional extension.
InfoGANs [Chen et al., 2016]: Information-theoretic extension.
ACGANs [Odena et al., 2017] Structured latent space.
EBGANs [Zhao et al., 2016]: New perspective of the energy.
BEGANs [Berthelot et al., 2017]: Auto-encoder extension.

GANs training: [Arjovsky and Bottou, 2017]

Wasserstein GANs:

WGANs [Arjovsky et al., 2017]: Wasserstein L1 divergence.
Improved WGANs [Gulrajani et al., 2017]: Gradient Penalty.
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Several Choices of Divergence

The divergences to measure the difference between P and Q
inlcude

Kullback-Leibler divergence:

KL(P,Q) =

∫
X
P(dx) · log

(
P(dx)

Q(dx)

)
.

Jensen-Shannon (JS) divergence:

JS(P,Q) =
1

2

[
KL(P,

P + Q
2

) + KL(Q,
P + Q

2
)

]
.

Wasserstein divergence/distance of order p

Wp(P,Q) =

(
inf

π∈Π(P,Q)

∫
X×X

m(x , y)p π(dx , dy)

) 1
p

,

with m a metric such as m(x , y) = ||x − y ||q for q ≥ 1.
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Discussions on these divergences

Example: Given θ ∈ [0, 1], assume that P and Q satisfy

∀(x , y) ∈ P, x = 0, y ∼ Uniform(0, 1),

∀(x , y) ∈ Q, x = θ, y ∼ Uniform(0, 1),

As θ 6= 0,

KL(P,Q) = KL(Q,P) = +∞, JS(P,Q) = log(2), W1(P,Q) = |θ| .

As θ = 0,

KL(P,Q) = KL(Q,P) = JS(P,Q) = W1(P,Q) = 0.
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Remark

KL is infinite when two distributions are disjoint;

JS has sudden jump, discontinuous at θ = 0;

W1 is continuous and relatively smooth;

Wasserstein L1 divergence outperforms KL and JS divergences
but lacks the flexibility.
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Moment Estimate, Concentration Inequality, and Duality
Continuity, Differentiability
Gradient Descent Scheme

Remedy: Relaxed Wasserstein

Definition (G., Hong, Lin, and Yang 2018)

The Relaxed Wasserstein divergence between the probability distributions
P and Q is defined as

WDφ
(P,Q) = inf

π∈Π(P,Q)

∫
X×X

Dφ(x , y) π(dx , dy),

where Dφ is the Bregman divergence with a strictly convex and
differentiable function φ : Rd → R, i.e.,

Dφ(x , y) = φ(x)− φ(y)− 〈∇φ(y), x − y〉

1 WDφ
(P,Q) ≥ 0 and = 0 iff P = Q almost everywhere.

2 WDφ
(P,Q) is a metric, as it is asymmetric.

3 WDφ
(P,Q) includes WKL with φ(x) = −x> log(x).
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Moment Estimate, Concentration Inequality, and Duality
Continuity, Differentiability
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Relaxed Wasserstein as Divergence

Question: Is Wφ a good divergence?

Point 1: Wφ(P,Q) should be small when P and Q are close.
Requirement: Wφ(P,Q) should be dominated by standard
divergence,

TV (P,Q) := sup
A∈B
|P(A)−Q(A)| .

Point 2: Wφ(Pn,Pr )→ 0 as n→∞ where Pr is a true
distribution Pr and Pn is the empirical distribution based on

X = (X1,X2, . . . ,Xn)
i .i .d .∼ Pr .

Requirement: Wφ(Pn,Pr ) should have the moment estimate
and concentration inequality, i.e., there exist α, β > 0 such
that

E
[
WDφ (Pn,Pr )

]
= O(n−α) (Moment Estimate),

Prob
(
WDφ (Pn,Pr ) ≥ ε

)
= O(n−β) (Concentration Inequality).
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= O(n−β) (Concentration Inequality).
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Relaxed Wasserstein as Divergence
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Dominated by TV and Standard Wasserstein

Theorem (G., Hong, Lin, and Yang 2018)

Assume that φ : X → R is a strictly convex and smooth function
with an L-Lipschitz continuous factor,

WDφ
(P,Q) ≤ L [diam(X )]2 · TV (P,Q)

WDφ
(P,Q) ≤ L

2
WL2(P,Q)2

where P and Q are two probability distributions supported on a
compact set X ⊂ Rd .
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Moment Estimate for RW

Theorem (G, Hong, Lin, and Yang 2018)

Assume that

Mq(Pr ) =

∫
X
‖x‖q2 Pr (dx) < +∞

for some q > 2, then there exists a constant C (q, d) > 0 such
that, for n ≥ 1,

E
[
WDφ (Pn,Pr )

]
≤ C(q, d)LM

2
q
q (Pr )

2
·


n−

1
2 + n−

q−2
q , 1 ≤ d ≤ 3, q 6= 4,

n−
1
2 log(1 + n) + n−

q−2
q , d = 4, q 6= 4,

n−
2
d + n−

q−2
q , d ≥ 5, q 6= d/(d − 2).
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Concentration Inequality for RW

Theorem (G., Hong, Lin, and Yang 2018)

Assume that

Eα,γ(Pr ) =

∫
X

exp (γ‖x‖α2 ) Pr (dx).

and one of the three following conditions holds,

∃ α > 2, ∃ γ > 0, Eα,γ(Pr ) <∞,
or ∃ α ∈ (0, 2) , ∃ γ > 0, Eα,γ(Pr ) <∞,
or ∃ q > 4, Mq(Pr ) <∞.

Then for n ≥ 1 and ε > 0, there exist the scalar a(n, ε) and b(n, ε) such
that

Prob
(
WDφ

(Pn,Pr ) ≥ ε
)
≤ a(n, ε)1{ε≤ L

2 }
+ b(n, ε).
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Duality Representation for RW

Theorem (G., Hong, Lin, and Yang 2018)

Assume that two probability distributions P and Q satisfy∫
X
‖x‖2

2 (P+Q) (dx) < +∞.

Then there exists a Lipschitz continuous function f : X → R such that the RW
divergence has a duality representation as

WDφ(P,Q) =

∫
X
φ(x) (P−Q) (dx) +

∫
X
〈∇φ(x), x〉 Q(dx)

−
(∫
X
f (x) P(dx) +

∫
X
f ∗ (∇φ(x)) Q(dx)

)
,

where f ∗ is the conjugate of f , i.e.,

f ∗(y) = sup
x∈Rd

〈x , y〉 − f (x).
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Key element for proof of duality

The classical duality representation for the standard
Wasserstein distance

The RW can be decomposed in terms of a distorted squared
Wasserstein-L2 distance of order 2, plus some residual terms
that are independent of the choice of the coupling π.
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Relaxed Wasserstein for GANs

Question: Is Wφ tractable for GANs?

Requirement 1: Wφ(Pr ,Pθ) should be continuous and
differentiable w.r.t. θ.

Requirement 2: Wφ(Pr ,Pθ) should have the easily computed
or approximated gradient evaluation, i.e.,

∇θ
[
WDφ

(Pr ,Pθ)
]

= F (gθ, φ,Z , . . .) .

where F is an abstract mapping.
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Continuity and Differentiablity

Theorem (G., Hong, Lin, and Yang 2018)

1 WDφ
(Pr ,Pθ) is continuous in θ if gθ is continuous in θ.

2 WDφ
(Pr ,Pθ) is differentiable almost everywhere if gθ is locally

Lipschitz with a constant L̄(θ, z) such that E
[
L̄(θ,Z )2

]
<∞,

i.e., for each given (θ0, z0), there exists a neighborhood N
such that

‖gθ(z)− gθ0(z0)‖2 ≤ L(θ0, z0) (‖θ − θ0‖2 + ‖z − z0‖2) .

for any (θ, z) ∈ N .
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Gradient Descent Scheme

Corollary (G., Hong, Lin, and Yang 2018)

Assume that gθ is locally Lipschitz with a constant L(θ, z) such
that E

[
L(θ,Z )2

]
<∞, and

∫
X ‖x‖

2
2 (Pr + Pθ) (dx) < +∞. Then

there exists a Lipschitz continuous solution f : X → R such that
the gradient of the RW divergence has an explicit form, i.e.,

∇θ
[
WDφ

(Pr ,Pθ)
]

= EZ

[
[∇θgθ(Z )]>∇2φ(gθ(Z ))gθ(Z )

]
+EZ [∇θf (∇φ(gθ(Z )))] .
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Experiment Setup

RW: KL divergence where φ(x) = −x> log(x).

Approach: RMSProp [Tieleman and Hinton, 2012].

Experiment I:
Baselines: WGANs, CGANs, InfoGANs, GANs, LSGANs,
DRAGANs, BEGANs, EBGANs and ACGANs.
Datasets:

MNIST: 60000 (train) and 10000 (test).
Fashion-MNIST: 60000 (train) and 10000 (test).

Experiment II:
Baselines: WGANs and WGANs-GP.
Datasets:

CIFAR-10 (color): 50000 (train) and 10000 (test).
ImageNet (color): 14197122.
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Metric for performance

The inception score is defined as follows:

Inception Score = exp {Ex [DKL(p(y |x), p(y)]} ,
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Empirical Results on Inception Score

Architecture Method
CIFAR-10 ImageNet

First 5 epochs Last 10 epochs First 3 epochs Last 5 epochs

DCGAN
RWGANs 1.8606 2.3962 2.0430 2.7008
WGANs 1.6329 2.4246 2.2070 2.7972

WGANs-GP 1.7259 2.3731 2.2749 2.7331

MLP
RWGANs 1.3126 2.1710 2.0025 2.4805
WGANs 1.2798 1.9007 1.7401 2.2304

WGANs-GP 1.2711 2.2192 1.8845 2.3448
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In Summary,

We propose a novel class of statistical divergence called
Relaxed Wasserstein (RW) divergence. This RW shares the
same critical probabilistic properties as Wasserstein distance,
without possible asymmetry.

RW divergence provides a lot of flexibility and possibilities in
generative modeling by using a class of strictly convex and
differentiable functions which contain different curvature
information.

We present a gradient-based optimization framework to learn
RWGAN and attain an encouraging results on image
generation.
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