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e Given the data X = (Xq,..., X)) id- P, where X; € RY.
o P, is the true distribution over sample X.
e P, is unknown.

o P, could be complicated as d increases.

Goal: How to learn P, from data?

Idea: Construct a sequence of parametric probability
distributions Py to approximate P,.

e Py is a parametric distribution over X.

o Py is structured!

e Py is known.

Question 1: How to generate Py?

Question 2*: How to evaluate the quality of Py?
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A curious and simple math puzzle

e Given a random variable X, and a flitration G, find (all?)
loss/divergence functions F(x, y) such that

arg \rpelg E[F(X, Y)] = E[X]|F].

Example: L? function: argminycg E[(X — Y)?] = E[X]]]

Counter-example: L' function

Is L? the unique choice?
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Bregman Divergence Function

@ Answer: Bregman Loss Fucntions Dy(x, y)
(Banerjee, G. and Wang (2005))

o Sufficient
arg min E[Dg(X,Y)] = E[X]|G].

o Necessary: If for all X

argyrgilgd E[F(X,y)] = E[X].

then with proper regularity conditions and up to an additive
constant,

F(Xv)/) = D¢(X7y)
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What is Bregman Divergence Function?

e BDF Dy(x,y)

o Let ¢ : R — R be a strictly convex, differentiable function
o Then, Dy : RY x R? — R is defined as

Dy(x,y) = ¢(x) — ¢(y) — (x =y, Vé(y)).

e For any x,y € RY, Dy(x,y) > 0, the equality holds iff x = y.
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Some examples of BDFs

o ¢(x) = x2, then Dy(x,y) = (x — y)?
o Let p=(p1,...,pq) be a probability distribution
° 7:1 pj = 1, with ¢(p) = 27:1 pj log p; (negative Shannon
entropy) is strictly convex on the d-simplex.
o Let g=1(q1,...,qq) be another probability distribution

d d
Dy(p.q) = Y pjlogpi— Y gjlogag
=1

—({p—aq, Vcb(q)_)
d

= > pilog(pi/q),
j=1

is the KL-divergence between p and g
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Proof of sufficiency

Let Y be any G-measurable random variable, and Y* = E[X|G].

@ Then
E[Dy(X, Y)] = E[Dg(X, Y7)]
= E[a(Y") = o(Y) = (X =Y,Ve(Y))
+H(X =Y, Vo(Y™))].
@ Notice
E[(X =Y., Vo(Y)] = E[E[(X = Y,Ve(Y))|]G]]

= E[(Y* =Y, Vo(Y))]

e Thus E[(X — Y*,V¢(Y*))] =0,
o And E[Dy(X, Y)] — E[Ds(X, Y*)] = E[Dy(Y*, Y)] > 0.
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Bregman Divergence Function

More facts about BDFs

@ Introduced and studied in the context of projection (Csiszar
(1975))

@ Pythagoras theorem holds for BDF (Censor and Lent (1981))

@ Bijection between family of exponential distributions and
BDFs, via Legendre duality (Merugu, Banerjee, Dhillon,
Ghosh (2003))

@ Widely applied to data analysis and machine learning, such as
K-means clustering

@ Well adopted in convex optimization
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Generative Adversarial Networks (GANs)

How to Make Generator Network Better?

A knowledgeable mentor (discriminator)—

2
+2

1596238
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Generative Adversarial Networks (GANs)

Discriminator Network [Goodfellow et al., 2014]

Determines whether the samples are generated or not.

@ has access to the real samples X.

@ optimizes the generator network by identifying faked samples.

pass!

fail again!

12/50



Generative Adversarial Networks (GANs)

Graphical Model

Generative Adversarial Network
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Generative modeling

The procedure of generative modeling is to construct a class of
suitable parametric probability distributions Py.

@ Generates latent variable Z € Z with a fixed probability
distribution P.

e P is known and simple, e.g., uniform distribution.
@ Generates a sequence of parametric functions gy : Z2 — X.
e gp is complicated but structured.
@ gy is the reason why the generative modeling is powerful.
e Construct Py as the probability distribution of gy(Z). More
specifically,

Po(dx) = /Z Ligy(e)=ax}Pz(d2) = Ez [L{g,(2)=x] -

14 /50
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@ GANSs:

LSGANs [Mao et al., 2016]: Least square loss.

DRAGANSs [Kodali et al., 2017]: Regret minimization.

CGANs [Mirza and Osindero, 2014]: Conditional extension.
InfoGANs [Chen et al., 2016]: Information-theoretic extension.
ACGANSs [Odena et al., 2017] Structured latent space.
EBGANSs [Zhao et al., 2016]: New perspective of the energy.
BEGANSs [Berthelot et al., 2017]: Auto-encoder extension.

@ GANs training: [Arjovsky and Bottou, 2017]
@ Wasserstein GANs:

o WGANSs [Arjovsky et al., 2017]: Wasserstein L' divergence.
o Improved WGANSs [Gulrajani et al., 2017]: Gradient Penalty.

15 /50
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Several Choices of Divergence

The divergences to measure the difference between P and Q
inlcude
@ Kullback-Leibler divergence:

KL(P,Q) = /X P(dx) - log (&Zﬁ;)

@ Jensen-Shannon (JS) divergence:

JS(P,Q) = [KL(IP’ w) + KL(Q,

@ Wasserstein divergence/distance of order p

1
W,(P,Q) = ( inf P r(dx, dy) )
.0 = (it [ ) n(a) )

with m a metric such as m(x,y) = ||x — y||q for ¢ > 1. o0

IPH;Q)]'
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Discussions on these divergences

e Example: Given 0 € [0, 1], assume that P and Q satisfy

V(x,y) € P, x =0, y ~ Uniform(0,1),
V(x,y) € Q, x =10, y ~ Uniform(0,1),

e As 0 # 0,
KL(P,Q) = KL(Q,P) = +oo, JS(P, Q) = log(2), Wi (P,Q) = |6].
@ As9 =0,

KL(P,Q) = KL(Q,P) = JS(P,Q) = W41 (P,Q) = 0.

17 /50
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Wasserstein Divergence and GANs

Remark

@ KL is infinite when two distributions are disjoint;
@ JS has sudden jump, discontinuous at 6 = 0;
@ Wi is continuous and relatively smooth;

o Wasserstein L! divergence outperforms KL and JS divergences
but lacks the flexibility.
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Remedy: Relaxed Wasserstein

Definition (G., Hong, Lin, and Yang 2018)

The Relaxed Wasserstein divergence between the probability distributions
P and Q is defined as

Wp, (P = inf D dx, d
D¢( 7@) TFE|I-|QP,Q)/X><X ¢(Xay) 7T( X, y)a

where D is the Bregman divergence with a strictly convex and
differentiable function ¢ : RY — R, i.e.,

Dy(x,y) = o(x) — ¢(y) = (Vo(y), x — y)
o WD¢(IP, Q) > 0 and = 0 iff P = Q almost everywhere.
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where D is the Bregman divergence with a strictly convex and
differentiable function ¢ : RY — R, i.e.,

Dy(x,y) = d(x) — ¢(y) — (Vo(y),x — y)
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Remedy: Relaxed Wasserstein

Definition (G., Hong, Lin, and Yang 2018)

The Relaxed Wasserstein divergence between the probability distributions
P and Q is defined as

Wp, (P = inf D dx, d
D¢( 7@) TFE|I-|QP,Q)/X><X ¢(Xa)/) 7T( X, y)a

where D is the Bregman divergence with a strictly convex and
differentiable function ¢ : RY — R, i.e.,

Dy(x,y) = d(x) — ¢(y) — (Vo(y),x — y)

(1] WDd)(IF’, Q) > 0 and = 0 iff P = Q almost everywhere.
Q@ Wp,(P,Q) is a metric, as it is asymmetric.
Q@ Wp,(P,Q) includes Wi with ¢(x) = —x " log(x).

19 /50
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Question: Is Wy a good divergence?
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e Point 1: Wy(P, Q) should be small when P and Q are close.
o Requirement: Wj(P, Q) should be dominated by standard
divergence,

TV(P,Q) := sup [P(A) — Q(A)].

AeB

o Point 2: Wy(P,,P;) — 0 as n — oo where P, is a true
distribution P, and P, is the empirical distribution based on
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Relaxed Wasserstein

Relaxed Wasserstein as Divergence

Question: Is Wy a good divergence?
e Point 1: Wy(P, Q) should be small when P and Q are close.
o Requirement: Wj(P, Q) should be dominated by standard
divergence,
TV(P,Q) := sup [P(A) — Q(A)].
AeB
o Point 2: Wy(P,,P;) — 0 as n — oo where P, is a true
distribution P, and P, is the empirical distribution based on
X = (X1, Xo, ..., X,) &P,
e Requirement: Wy(P,,[P,) should have the moment estimate
and concentration inequality, i.e., there exist o, 5 > 0 such
that

E [Wh, (P,,B/)] = O(n %) (Moment Estimate),
Prob (Wp, (Pn,;) >€¢) = O(n"”)  (Concentration Inequality). .,
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Relaxed Wasserstein

Dominated by TV and Standard Wasserstein

Theorem (G., Hong, Lin, and Yang 2018)

Assume that ¢ : X — R is a strictly convex and smooth function
with an L-Lipschitz continuous factor,

Wp,(P,Q) < L[diam(X)]* - TV(P,Q)
Wp,(P,Q) < éWLz(]P’,Q)z

where P and QQ are two probability distributions supported on a
compact set X C RY.
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Moment Estimate for RW

Theorem (G, Hong, Lin, and Yang 2018)
Assume that

Mo(Pr) = [ Ilf Bi(d) < +0
X

for some q > 2, then there exists a constant C(q,d) > 0 such
that, forn > 1,

E [Wb, (Pa,P,)]

1 q—2
2 n~2+n 9, 1<d<3, 4,
Cla.dimi®) | "3 L. =9=3a7
S T nilg(lan) T, d=4, q#4,
=
n_%—kn_T,

d>5, q#d/(d-2).
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Relaxed Wasserstein

Concentration Inequality for RW

Theorem (G., Hong, Lin, and Yang 2018)
Assume that

o) = | e (2lxl5) P (e
and one of the three following conditions holds,

Ja>2, 37>0, Euq(Pr) < o0,
or 3a€(0,2), I3v>0, E~(P/) < o0,
or 3g>4, Mg(P,) <

Then for n > 1 and € > 0, there exist the scalar a(n,€) and b(n, €) such
that
Prob (Wp, (Py,Pr) > €) < a(n, €)1(.<1y + b(n, €).
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nt Scheme

Duality Representation for RW

Theorem (G., Hong, Lin, and Yang 2018)
Assume that two probability distributions P and Q satisfy

/X IXI2 (P + Q) (dx) < +oo.

Then there exists a Lipschitz continuous function f : X — R such that the RW
divergence has a duality representation as

Wo,(P,Q) = /X $(x) (P— Q) (d) + /X (V6(x), %) Q)

= (/ f(x) P(dx) +/ *(Vo(x)) Q(dx)) ,
x x
where f* is the conjugate of f, i.e.,

f*(y) = sup (x,y) — f(x).
XERd 25 /50
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Key element for proof of duality

@ The classical duality representation for the standard
Wasserstein distance
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Relaxed Wasserstein e
Gradient

Key element for proof of duality

@ The classical duality representation for the standard
Wasserstein distance

@ The RW can be decomposed in terms of a distorted squared
Wasserstein-L2 distance of order 2, plus some residual terms
that are independent of the choice of the coupling 7.
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Relaxed Wasserstein

Relaxed Wasserstein for GANs

Question: Is W tractable for GANs?

e Requirement 1: Wy(IP,,Py) should be continuous and
differentiable w.r.t. 6.

e Requirement 2: Wy(IP,,Py) should have the easily computed
or approximated gradient evaluation, i.e.,

Vo [Wp, (Pr,Po)] = F (80,9, Z,-..).

where F is an abstract mapping.
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Continuity and Differentiablity

Theorem (G., Hong, Lin, and Yang

Q@ Wp, (P, Py) is continuous in 0 if gy is continuous in 6.
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Relaxed Wasserstein Gradient Descent Scheme

Continuity and Differentiablity

Theorem (G., Hong, Lin, and Yang 2018)
Q@ Wp, (P, Py) is continuous in 0 if gy is continuous in 6.
@ Wp,(P,,Pp) is differentiable almost everywhere if gy is locally

Lipschitz with a constant L(,z) such that E [L(0, Z)?] < oo,
i.e., for each given (0, z), there exists a neighborhood N'

such that

llgo(z) — g6, (20)ll, < L(60,20) ([0 — oll2 + [z — 20]|2) -

for any (0,z) € N.
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Gradient Descent Scheme

Corollary (G., Hong, Lin, and Yang 2018)

Assume that gy is locally Lipschitz with a constant L(0, z) such
that E [L(0, Z)?] < 0o, and [, [|x||3 (P, + Pg) (dx) < +00. Then
there exists a Lipschitz continuous solution f : X — R such that
the gradient of the RW divergence has an explicit form, i.e.,

Vo [Wo,(Pr,Po)] = Ez [[Vee(2)]T V26(e0(2))e0(2)]
+Ez [Vof (Vo(go(2)))]-
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Experiment Setup

e RW: KL divergence where ¢(x) = —x " log(x).
e Approach: RMSProp [Tieleman and Hinton, 2012].

e Experiment I:

o Baselines: WGANs, CGANSs, InfoGANs, GANs, LSGANs,
DRAGANs, BEGANs, EBGANs and ACGANs.
o Datasets:

e MNIST: 60000 (train) and 10000 (test).
o Fashion-MNIST: 60000 (train) and 10000 (test).
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Empirical Results CIFAR-10 and ImageNet datasets

Experiment Setup

RW: KL divergence where ¢(x) = —x ' log(x).
Approach: RMSProp [Tieleman and Hinton, 2012].

Experiment I:

o Baselines: WGANs, CGANs, InfoGANs, GANs, LSGANS,
DRAGANs, BEGANs, EBGANs and ACGANSs.
o Datasets:
e MNIST: 60000 (train) and 10000 (test).
o Fashion-MNIST: 60000 (train) and 10000 (test).
Experiment IlI:
o Baselines: WGANs and WGANs-GP.
o Datasets:
o CIFAR-10 (color): 50000 (train) and 10000 (test).
o ImageNet (color): 14197122.
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Metric for performance

The inception score is defined as follows:

Inception_Score = exp {E, [DkL(p(y|x), p(¥)]} ,
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Empirical Results on Inception Score

. CIFAR-10 ImageNet
Architecture Method First 5 epochs Last 10 epochs First 3 epochs g Last 5 epochs

RWGANSs 1.8606 2.3962 2.0430 2.7008
DCGAN WGANSs 1.6329 2.4246 2.2070 2.7972
WGANs-GP 1.7259 2.3731 2.2749 2.7331
RWGANSs 1.3126 2.1710 2.0025 2.4805
MLP WGANSs 1.2798 1.9007 1.7401 2.2304
WGANs-GP 1.2711 2.2192 1.8845 2.3448
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same critical probabilistic properties as Wasserstein distance,
without possible asymmetry.

e RW divergence provides a lot of flexibility and possibilities in
generative modeling by using a class of strictly convex and
differentiable functions which contain different curvature
information.

@ We present a gradient-based optimization framework to learn
RWGAN and attain an encouraging results on image
generation.
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Future directions:

@ Does some optimal choice of ¢ exist in real problems?
@ Does ¢ depend on the data samples or the problem structure?

@ Applications to Finance: JP Morgan on-going project using
GANSs.

@ In the theory of optimal transport and stochastic games,
relaxed Wasserstein is more natural than Wasserstein
distance: the same nice mathematical properties, without the
symmetry constraint.
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